Non-fragile state estimation for discrete Markovian jumping neural networks
نویسندگان
چکیده
In this paper, the non-fragile state estimation problem is investigated for a class of discrete-time neural networks subject to Markovian jumping parameters and time delays. In terms of a Markov chain, the mode switching phenomenon at different times is considered in both the parameters and the discrete delays of the neural networks. To account for the possible gain variations occurring in the implementation, the gain of the estimator is assumed to be perturbed by multiplicative norm-bounded uncertainties. We aim to design a non-fragile state estimator such that, in the presence of all admissible gain variations, the estimation error converges to zero asymptotically. By adopting the Lyapunov-Krasovskii functional and the stochastic analysis theory, sufficient conditions are established to ensure the existence of the desired state estimator that guarantees the stability of the overall estimation error dynamics. The explicit expression of such estimators is parameterized by solving a convex optimization problem via the semi-definite programming method. A numerical simulation example is provided to verify the usefulness of the proposed methods. Index Terms Non-fragile state estimation; estimator gain variations; Markovian jumping; time delays; nonlinearity
منابع مشابه
Robust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach
In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...
متن کاملState Estimation for Discrete-time Markovian Jumping Neural Networks with Mixed Mode-Dependent Delays
In this paper, we investigate the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters as well as mode-dependent mixed time-delays. The parameters of the discrete-time neural networks are subject to the switching from one mode to another at different times according to a Markov chain, and the mixed time-delays consist of both discrete and d...
متن کاملStability Criteria for Uncertainty Markovian Jumping Parameters of BAM Neural Networks with Leakage and Discrete Delays
In this paper, the problem of stability criteria for Markovian jumping BAM neural networks with leakage and discrete delays has been investigated. Some new sufficient condition are derived based on a novel Lyapunov-Krasovskii functional approach. These new criteria based on delay partitioning idea are proved to be less conservative because free-weighting matrices method and a convex optimizatio...
متن کاملExponential Stability of Delayed Recurrent Neural Networks with Markovian Jumping Parameters
In this paper, the global exponential stability analysis problem is considered for a class of recurrent neural networks (RNNs) with time delays and Markovian jumping parameters. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. The purpose of the prob...
متن کاملSynchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control
In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 179 شماره
صفحات -
تاریخ انتشار 2016